IA: TAMBA

Lycée : Koumpentoum

Année: 2025-2026 Chapitre: Fonction Numérique

SERIE D'EXERCICES

EXERCICE 1

Calculer les limites suivantes :

1)
$$\lim_{x \to 0} \frac{2\sin^2 x - 2(1 - \cos x)}{5x^2}$$

1)
$$\lim_{x\to 0} \frac{2\sin^2 x - 2(1-\cos x)}{5x^2}$$
 2) $\lim_{x\to 0} \frac{1-\cos 2x}{\sin^2 2x}$ 3) $\lim_{x\to 0} \frac{\sin 2x}{\sin^2 x}$

EXERCICE 2

1. On considère la fonction f définie sur IR par :

$$\begin{cases} f(x) = \sqrt{x-2}, & \text{si } x \ge 2 \\ f(x) = x^2 + kx + 1, & \text{si } x \le 2. \end{cases}$$

Déterminer le réel k pour que la fonction f soit continue au point 2.

2. Soit
$$f(x) = \begin{cases} \frac{\sqrt{x+1}}{x} - \frac{1}{x} & \text{si } x \neq 0 \\ f(0) = a \end{cases}$$

- a. Calculer les limites de f aux bornes de D_f .
- b. Déterminer a pour que f soit continue sur D_f .
- 3. Soit f la fonction définie par : $f(x) = \frac{1 + \cos 3x}{\cos^3 x}$ Déterminer D_f , la parité et la périodicité de f . En déduire qu'il suffit d'étudier f sur $D_f \cap [0; \pi] = E$

EXERCICE 3

- 1. Soit $g(x) = \frac{x^2 9}{|x| 3}$; g est-elle prolongeable par continuité en 3 ? en -3 ? si oui donner le prolongement.
- 2. $f(x) = \begin{cases} 1 + \frac{\cos x 1}{x} & \text{si } x \in]-\infty; 0[\\ \frac{\sin x}{x} & \text{si } x \in]0; +\infty[\end{cases}$

Montrer que f est prolongeable par continuité en 0.

3. Étudier la continuité et la dérivabilité en 0 de la $\underbrace{fonction f(x)} = \frac{x^2 + |x|}{x^2 - 2x - 1}.$

EXERCICE 4

Soient
$$f(x) = x + \sqrt{|x^2 - 1|}$$
 et $g(x) = x - \sqrt{|x^2 - 1|}$

- 1. C_f admet-elle une tangente au point d'abscisse 1 ?
- Montrer que C_f et C_g sont symétriques par rapport à O.

EXERCICE 5

Soit
$$f(x) = \frac{x^3 - x^2 + 4}{x^2}$$
.

- 1. C_f passe-t-elle par le point $A\binom{1}{5}$? justifier.
- 2. Déterminer les abscisses des points de la courbe C_f où la tangente est parallèle à la droite d'équation y = -7x + 1

PROBLEME 1

Soit f la fonction définie par : $f(x) = \frac{(x+2)^2 - |x+2|}{x-1}$ et

Prof: M. DRAME

Classe : TS_2

 C_f sa courbe représentative.

- 1- a) Étudier la dérivabilité de f en -2. En déduire que C_f admet deux demi tangentes au point d'abscisse -2.
 - b) Dresser le tableau de variation de f.
- 2- a) Déterminer les réels a, b, c, a', b', c' tels que :

$$f(x) = ax + b + \frac{c}{x-1}$$
 si $x \in [-2; +\infty[/\{1\}]]$

$$f(x) = a'x + b' + \frac{c'}{x-1}$$
 si $x \in]-\infty;-2]$

- b) Montrer que C_f admet deux asymptotes obliques D_1 et D_2 dont on donnera les équations.
- c) Construire les demi tangentes au point d'abscisse -2, les droites D_1 et D_2 puis C_f .

PROBLEME 2

1) Soit la fonction g définie par :

$$g(x) = x\sqrt{1+x^2} - 1.$$

- a- Étudier les variations g.
- b- Montrer qu'il existe un réel unique α tel que $g(\alpha) = 0$ et que de plus $0.7 \le \alpha \le 0.8$.
- c- En déduire le signe de g sur son ensemble de définition.
- 2) Soit la fonction h définie par :

$$h(x) = \frac{x^3}{3} - \sqrt{1 + x^2}$$
.

- a- Étudier les limites de h aux bornes de son ensemble de définition.
- b- Montrer que , pour tout élément x de D_h ; on a

$$h'(x) = \frac{x \cdot g(x)}{\sqrt{1+x^2}}.$$

- c- En déduire le tableau de variation de la fonction
- 3) Tracer C_h sur un repère orthonormé (O i; j).

PROBLEME 3

Soit f la fonction définie par :

$$f(x) = \begin{cases} \frac{x^2 - 2x}{x - 1} & \text{si } x < 0\\ x + \sqrt{x^2 + x} & \text{si } x \ge 0 \end{cases}$$
, on note C_f sa courbe

dans (O, ij).

- 1-a) Déterminer D_f et les limites aux bornes de D_f .
- b) Étudier la continuité et la dérivabilité de f en 0. Qu'en déduire pour $\,C_f\,$?
- c) Préciser l'ensemble de dérivabilité de f et calculer f'(x).
- d) Dresser le tableau de variation de f.
- 2- Montrer que $\,C_f\,$ admet une asymptote oblique $\,D_1\,$ en $+\infty\,$ et une asymptote oblique $\,D_2\,$ en
- - ∞ . Préciser la position de C_f par rapport à D_1 et D_2 .
- 3- Soit g la restriction de f à l'intervalle $I = [0; +\infty[$.
- a) Montrer que g définit une bijection de I vers un intervalle à J à préciser.
- b) Étudier la dérivabilité de g^{-1} la réciproque de g sur I.

Calculer $(g^{-1})'(2)$. Donner alors une équation de la tangente à $C_{g^{-1}}$ au point d'abscisse 2.

- c) Expliciter $g^{-1}(x)$. Retrouver alors les résultats de la question 3-b).
- 4- Construire $D_{\rm 1},\ D_{\rm 2},\ C_{\it f}$ et $\ C_{\it g^{-1}}$ dans le même repère.

PROBLEME 4

Soit $h(x) = x + \sqrt{|4x^2 - 1|}$. On note C_h sa courbe représentative dans un repère orthogonale.

- 1- Écrire h(x) sans valeurs absolues. Calculer les limites de h en $+\infty$ et $-\infty$.
- 2- Étudier la dérivabilité de h en $\frac{1}{2}$ et interpréter.
- 3- Démontrer que $4x + \sqrt{4x^2 1} < 0 \Leftrightarrow x \in \left] -\infty; -\frac{1}{2} \right[$ et $4x + \sqrt{1 4x^2} > 0 \Leftrightarrow x \in \left] -\frac{1}{2}; \frac{1}{2\sqrt{5}} \right[$. En déduire le signe de h'(x) puis dresser le tableau de variations de h.

- 4- Étudier les branches infinies et préciser la position de C_h par rapport à ses asymptotes éventuelles.
- 5- Tracer C_h et ses asymptotes dans un repère.
- 6- Soit f la restriction de h à $-\infty; -\frac{1}{2}$.
- a) Montrer que f est une bijection de $\left]-\infty; -\frac{1}{2}\right]$ sur un intervalle K que l'on précisera. On note f^{-1} la réciproque de f. Donner les variations de f^{-1} .
- b) Calculer $f^{-1}(0)$ puis donner une équation de la tangente à $C_{f^{-1}}$ au point d'abscisse 0. Tracer $C_{f^{-1}}$ dans le même repère.

PROBLEME 5

- I- Soit f la fonction définie par : $f(x) = 2x\sqrt{|1-x^2|}$.
- 1) Déterminer l'ensemble de définition Df de f. f est-elle continue sur Df.
- 2) Écrire f sans valeur absolue. Étudier la dérivabilité de f en 1 et -1.
- 3) Écrire f'(x) sur les intervalles où f est dérivable puis dresser le tableau de variation de f.
- II- On considère la fonction g définie par :

$$g(x) = \begin{cases} -x + \sqrt{x^2 - 2x} & si \ x \in] -\infty; 0[\\ 2x\sqrt{|1 - x^2|} & si \ x \in [0; +\infty[$$

- 1) Étudier la continuité et la dérivabilité de g en 0.
- 2) Étudier les branches infinies de Cg courbe de g.
- 3) Dresser le tableau de variation de g.
- 4) Tracer avec soin Cg dans un repère orthonormé : unité 2cm.
- III- Soit h la restriction de g sur]- ∞ ; 0[.
- 1) Montrer que h admet une bijection réciproque h^{-1} dont on précisera son domaine de définition. Étudier la dérivabilité de h^{-1} .
- 2) Déterminer $h^{-1}(x)$.
- 3) Montrer que la droite d'équation $y=-\frac{1}{2}x+\frac{1}{2}$ est asymptote oblique à $C_{h^{-1}}$ en $+\infty$.
- 4) Tracer $C_{{\scriptscriptstyle h^{-1}}}$ dans le même repère.

AU TRAVAIL